

The Memory Perturbation Equation: **Understanding Model's Sensitivity to Data**

Peter Nickl[†], Lu Xu^{†*}, Dharmesh Tailor^{‡*}, Thomas Möllenhoff[†], Mohammad Emtiyaz Khan[†] †RIKEN Center for AI Project, Japan, ‡University of Amsterdam, Netherlands, *equal contribution

Derived using Bayesian Principles

MPE: $\hat{\boldsymbol{\lambda}}_t^{\setminus \mathcal{M}} - \boldsymbol{\lambda}_t = \rho \sum_{j \in \mathcal{M}} \tilde{\mathbf{g}}_j(\boldsymbol{\lambda}_t)$

Deviation in natural parameters

Sum over natural gradients of removed examples

We propose to estimate sensitivity by taking an **opposite** step of the Bayesian Learning Rule [1]

The opposite step is equivalent to simply dividing the posterior of a conjugate model by the removed examples, giving rise to MPE

Sensitivity estimation for a wide-variety of algorithms

Algorithm	Update	Sensitivity
Newton's method	$\boldsymbol{\theta}_t \leftarrow \boldsymbol{\theta}_{t-1} - \mathbf{H}_{t-1}^{-1} \nabla \mathcal{L}(\boldsymbol{\theta}_{t-1})$	$\mathbf{H}_{t-1}^{-1} abla \ell_i(oldsymbol{ heta}_t)$
Online Newton (ON) [1]	$\boldsymbol{\theta}_t \leftarrow \boldsymbol{\theta}_{t-1} - \rho \mathbf{S}_t^{-1} \nabla \mathcal{L}(\boldsymbol{\theta}_{t-1})$	$\mathbf{S}_t^{-1} abla \ell_i(oldsymbol{ heta}_t)$
ON (diag.+minibatch) [1]	$\boldsymbol{\theta}_t \leftarrow \boldsymbol{\theta}_{t-1} - \rho \mathbf{s}_t^{-1} \cdot \hat{\nabla} \mathcal{L}(\boldsymbol{\theta}_{t-1})$	$\mathbf{s}_t^{-1} \cdot abla \ell_i(oldsymbol{ heta}_t)$
iBLR (diag.+minibatch) [2]	$\mathbf{m}_t \leftarrow \mathbf{m}_{t-1} - \rho \mathbf{s}_t^{-1} \cdot \hat{\nabla} \mathcal{L}(\boldsymbol{\theta}_{t-1})$	$\mathbf{s}_t^{-1} \cdot abla \ell_i(oldsymbol{ heta}_t)$
RMSprop/Adam	$\boldsymbol{\theta}_t \leftarrow \boldsymbol{\theta}_{t-1} - \rho \mathbf{s}_t^{-\frac{1}{2}} \cdot \hat{\nabla} \mathcal{L}(\boldsymbol{\theta}_{t-1})$	$\mathbf{s}_t^{-rac{1}{2}} \cdot abla \ell_i(oldsymbol{ heta}_t)$
SGD	$\boldsymbol{\theta}_t \leftarrow \boldsymbol{\theta}_{t-1} - \rho \hat{\nabla} \mathcal{L}(\boldsymbol{\theta}_{t-1})$	$ abla \ell_i(oldsymbol{ heta}_t)$

 $\boldsymbol{\theta}_t$ is the parameter at iteration t, ρ is the learning rate, \mathcal{L} is the loss, ℓ_i is the loss of example i, **H** is the Hessian, **s** and **S** are scale vector and matrix, and **m** is the mean of the posterior.

Leave-one-class-out estimation (LOCO) can predict the decrease in test performance when a class C is removed

 $\sum_{i \in \mathcal{C}} \ell\left(y_i, f_i(heta_t^{ackslash \mathcal{C}})
ight)$ $pprox \sum \ell \left(y_i, \, f_i(heta_t) + oldsymbol{v_{it}e_{it}}
ight)$

The proposed MPE generalizes influence measures [3] to a wide-variety of algorithms (including their iterations)

Sensitivities can be used to accurately predict generalization

- Predicting generalization on unseen test data during training based on training data alone
- Evaluation of a LOO cross-validation (CV) loss
- No retraining required

- Model selection of L2-regularization param. δ
- Evaluating LOO cross-validation after training
- \circ MPE avoids retraining of N models per δ

References:

[1] Khan and Rue, The Bayesian Learning Rule. JMLR 2023. [2] Lin et al., Handling the Positive-Definite Constraint in the Bayesian Learning Rule. ICML 2020. [3] Koh and Liang, Understanding Black-box Predictions via Influence Functions. ICML 2017.